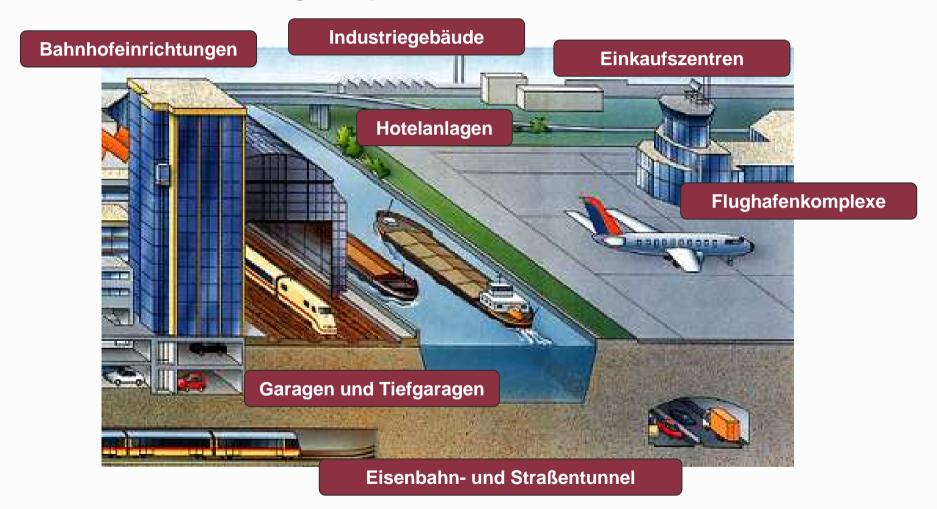
Objektversorgung Übersicht

Charly Lemberger

Senior Manager Marketing bei telent

Tel: 07191/900-4635


E-Mail: karl-heinz.lemberger@telent.de

Objektversorgung: Typische Einsatzmöglichkeiten

Klassische Anwendungsbeispiele

Geschätztes Marktvolumen

für die nächsten 10 bis 20 Jahre

- Laut Sachstandsbericht des Innenministeriums zur Einführung des Digitalfunks in NRW ergeben sich folgende Einschätzungen:
 - NRW hat 20% der zu versorgenden Objekte in Deutschland
 - 680 Gebäude sollten laut dieses Berichts versorgt werden
 - Daraus ergeben sich hochgerechnet bundesweit ca. 3400 (2628) Objekte
 - Objekte aus privater Hand kommen noch hinzu
- Die Objekte sind unterschiedlich groß und der Ausbauzustand dürfte ebenfalls unterschiedlich sein
 - Eine genaue Abschätzung ist schwierig
 - Eine grobe Schätzung über einen Mittelwert pro Projekt zeigt, dass es sich um ein beträchtliches Marktvolumen im handelt.

Es gibt Bestandsschutz!

Aktuell werden neue Anlagen teilweise noch in Analogtechnik gebaut.

Rechtliche Grundlagen sind nur beschränkt vorhanden

- Bauverordnungen der Länder zum Brandschutz und zu Bauwerken mit besonderer Nutzung.
- Länderspezifische Gesetze zum Brand- und Katastrophenschutz (z.B. HBKG (Hessen), SächsBRKG, LKatSG (BW), etc.)
- GUV-V C 53 (Unfallverhütungsvorschrift Feuerwehren, früher GUV 7.13)
- FwDV (Feuerwehrdienstvorschrift) Einsatz von Funk zur Sicherung des Einsatztrupps unter Atemschutz. Die Verbindung zum Sicherheitstrupp muss gewährleistet sein.
- Richtlinien für die Ausstattung und den Betrieb von Straßentunneln (RABT)
- Richtlinie des Eisenbahn-Bundesamtes "Anforderungen des Brand- und Katastrophenschutzes an den Bau und Betrieb von Eisenbahntunneln".

Es gibt keine bundeseinheitliche Regelung!

Die polizeiliche BOS hat derzeit kein Mandat, aber das Interesse einer "einheitlicheren" Regelung.

PMeV-Aktivitäten – der AK Objektversorgung 1/2

- Gründungssitzung des AK-Objektversorgung am 25. Nov. 2009 auf der PMRExpo den Vorsitz des AK übernimmt Charly Lemberger.
- Kickoff mit der BDBOS am 2. Februar 2010. Es gibt gemeinsame Interessen und die BDBOS ist mit einer Zusammenarbeit einverstanden.
- Der AK erarbeitete ein Dokument, das von den Rahmenbedingungen über die technischen Alternativen bis hin zum After-Sales-Service alles abdeckt (ongoing).
- Die Kommentierung des AK zum BDBOD-Dokument wurde von der BDBOS aufgegriffen und in das neue Release eingearbeitet

Stillstand oder Sommerpause

Die Objektversorgung innerhalb der BDBOS findet sich neu!

PMeV-Aktivitäten – der AK Objektversorgung 2/2

- Anfang Oktober zwei Meetings mit der BDBOS (05.10.2010)
 - Meeting mit dem "Strategischen Controlling", Herr Eike Führ, Dr. Kay Schützler
 - Meeting mit Herrn Seibt

Klare Aussage der BDBOS: Man möchte mit dem PMeV weiterarbeiten

- Nächste Schritte (24.11.2010 auf der PMRExpo)
 - Meeting mit Alcatel Lucent
 - Meeting mit der BDBOS

- Tunnelbauvorhaben In Bau befindlich
- Tunnelbauvorhaben Projektbeginn für 2009 geplant
- Tunnelbauvorhaben regionale Zuordnung
- Tunnelbauvorhaben geplante Vorhaben

Tunnelbauvorhaben - In Bau befindlich

Quelle: STUVA

(Tunnelbau in Deutschland: Statistik 2008/2009 – Analyse und Ausblick: Prof. A. Haack)

Tabelle 1: Auffahrlänge und Ausbruchvolumen der jeweils zum Jahreswechsel im Bau befindlichen Tunnel

Table 1: Driven length and excavated volume of tunnels under construction at the given turn-of-the-year

Jahreswechsel Turn-of-the-year		2008,	/2009		2007/2008 (zum Vergleich)				2006/2007 (zum Vergleich)			
Art der Tunnelnutzung Use of Tunnel	Auffahrlänge Driven Length [km]		Ausbruchvolumen Excavated volume [10³m³]		Auffahrlänge Driven Length [km]		Ausbruchvolumen Excavated volume [10³m³]		Auffahrlänge Driven Length [km]		Ausbruchvolumen Excavated volume [10³m³]	
US: U-, Stadt-, S-Bahn Underground, urban and rapid transit system	27,308	(3,079)	2712,0	(239,0)	24,390	(14,913)	2481,0	(1851,0)	9,918	(0,361)	679,0	(119,0)
B: Fernbahn Long Distance railway	81,015	(20,055)	achst	::::::::.0) um	63,084	(10,2==	achst	u m	52,815	(23,748)	5005,0	(2426,0)
S: Straßen/Road	29,981	/15.7 i 4)	3730,0	(1681,0)	23,048	/1,203)	3063,0	(103.0)	26,959	(12,130)	3515,0	(1427,0)
Verkehrstunnel Traffictunnels	138,304	(38,848)	14605,0	(3916,0)	110,522	(26,385)	12050,0	(3455,0)	89,692	(36,239)	9199,0	(3972,0)
A: Abwasser/Sewage	1,194	(0,374)	11,5	(8,1)	3,540	(2,150)	30,5	(24,7)	7,490	(4,790)	31,2	(9,2)
V: Versorgung/Utility lines	4,050	(4,050)	44,1	(44,1)	0,000	(0,000)	0,0	(0,0)	17,466	(0,000)	160,0	(0,0)
So: Sonstiges/Others	0,000	(0,000)	0,0	(0,0)	0,137	(0,137)	14,0	(14,0)	0,440	(0,250)	39,0	(1,0)
Gesamt/Total	143,548	(43,272)	14660,6	(3968,2)	114,199	(28,672)	12094,5	(3493,7)	115,088	(41,279)	9429,2	(3982,2)
GS: Grundsanierung von Tunneln/Redevelopments of tunnels	0,000	(0,000)			2,622	(2,622)			0,000	(0,000)		

Die Klammerwerte geben die zum betrachteten Jahreswechsel neu erfassten Tunnelbaukilometer bzw. m³ Ausbruchvolumen an The values in brackets relate to the newly compiled tunnel construction km and m³ of excavated volume at the given turn-of-the-year

Tunnelbauvorhaben – Projektbeginn für 2009 geplant

Quelle: STUVA

(Tunnelbau in Deutschland: Statistik 2008/2009 – Analyse und Ausblick: Prof. A. Haack)

Tabelle 2: Auffahrlänge und Ausbruchvolumen der jeweils ab dem Jahreswechsel geplanten und gemeldeten Tunnel (Baubeginn ab 2009)

Table 2: Driven length and excavated volume of planned and registered tunnels with construction start at end-of-the-year (start of construction as from 2009)

Jahreswechsel Turn-of-the-year		2008	3/2009		2007/2008 (zum Vergleich)				2006/2007 (zum Vergleich)			
Art der Tunnelnutzung Use of Tunnel	Auffahrlänge Driven Length [km]		Ausbruchvolumen Excavated Volume [10³m³]		Auffahrlänge Driven Length [km]		Ausbruchvolumen Excavated Volume [10³m³]		Auffahrlänge Driven Length [km]		Ausbruchvolumen Excavated Volume [10³m³]	
ZUS: U-, Stadt-, S-Bahn Underground, urban and rapid transit systems	38,173	(0,000)	2707,0	(0,0)	47,812	(6,904)	3319,0	(576,0)	71,738	(16,150)	5532,0	(1069,0)
ZB: Fernbahn Main line railway	196,327	(2000) Verr	ingeri	ina Ina	212,320	(a.coa) Ver	ringer	una una	222,503	(4,100)	23.764,0	(401,0)
ZS: Straßen/Road	159,667	(12,200)	19039,0	(izūū,0)	155,525	(4,503)	19553,0	(524,0)	149,016	(25,846)	18.859,0	(3906,0)
Verkehrstunnel Traffic tunnels	394,167	(12,286)	44370,0	(1206,0)	415,657	(11,407)	45135,0	(1100,0)	443,257	(46,096)	48.155,0	(5576,0)
ZA: Abwasser/Sewage	55,000	(0,000)	500,0	(0,0)	55,800	(0,000)	501,6	(0,0)	55,800	(0,800)	501,6	(1,6)
ZV: Versorgung/Utility lines	0,000	(0,000)	0,0	(0,0)	0,000	(0,000)	0,0	(0,0)	0,000	(0,000)	0,0	(0,0)
ZSo: Sonstiges/Others	5,464	(1,760)	471,0	(106,0)	7,014	(0,000)	405,0	(0,0)	7,584	(2,670)	407,4	(349,0)
Gesamt/Total	454,631	(14,046)	45341,6	(1312,0)	478,471	(11,407)	46041,6	(1100,0)	506,641	(48,766)	49.064,0	(5725,0)
ZGS: Grundsanierung von Tunneln Redevelopment of tunnels	20,553	(0,691)			23,992	(1,750)			22,520	(1,559)		

Die Klammerwerte geben die zum betrachteten Jahreswechsel neu erfassten Tunnelbaukilometer bzw. m³ Ausbruchvolumen an The values in brackets relate to the newly compiled tunnel construction km and m³ of excavated volume at the given turn-of-the-year

Tunnelbauvorhaben – regionale Zuordnung

Quelle: STUVA

(Tunnelbau in Deutschland: Statistik 2008/2009 - Analyse und Ausblick: Prof. A. Haack)

Tabelle 3: Regionale Zuordnung der zum Jahreswechsel 2008/2009 im Baubefindlichen Verkehrstunnelprojekte

Table 3: Regional distribution of the transportation tunnels under construction at the turn-of-the-year 2008/2009

Bundesland/Federal state		Tun	Anteil Share			
		ZUS	ZB	ZS	gesamt total	[%]
BW	Baden-Württemberg	2,520	18,762	7,281	28,563	20,7
BY	Bayern	4,571	2,975	6,037	13,583	9,8
BE	Berlin	3,600	0,000	0,000	3,600	2,6
ВВ	Brandenburg	0,000	0,000	0,000	0,000	0,0
НВ	Bremen	0,000	0,000	0,000	0,000	0,0
НН	Hamburg	6,559	0,000	0,000	6,559	4,7
HE	Hessen	0,000	4,465	3,200	7,665	5,5
MV	Mecklenburg-Vorpommern	0,000	0,000	0,000	0,000	0,0
NI	Niedersachsen	0,000	0,000	0,000	0,000	0,0
NW	Nordrhein-Westfalen	10,058	0,000	1,973	12,031	8,7
RP	Rheinland-Pfalz	0,000	0,000	1,312	1,312	0,9
SL	Saarland	0,000	0,000	0,000	0,000	0,0
SN	Sachsen	0,000	5,880	0,000	5,880	4,3
ST	Sachsen-Anhalt	0,000	30,780	0,000	30,780	22,3
SH	Schleswig-Holstein	0,000	0,000	0,000	0,000	0,0
TH	Thüringen	0,000	18,153	10,178	28,331	20,5
	Alle Bundesländer All Federal States	27,308	81,015	29,981	138,304	100,0

Tabelle 4: Regionale Zuordnung der geplanten und gemeldeten Verkehrstunnelprojekte (Baubeginn ab 2009)

Table 4: Regional distribution of planned and registered transportation tunnel projects (start of construction as from 2009)

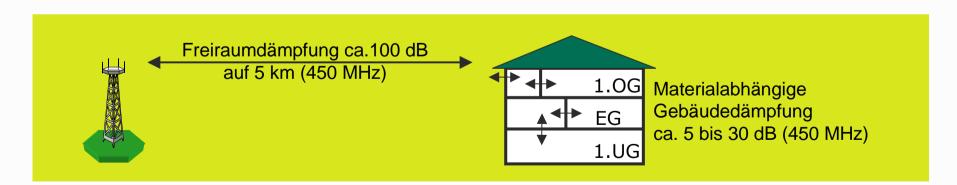
Bundesland/Federal state		Tun	Anteil Share			
Bunc	bungesiang/regeral state		В	S	gesamt total	[%]
BW	Baden-Württemberg	5,994	135,623	48,045	189,662	48,1
BY	Bayern	23,548	26,157	21,145	70,850	18,0
BE	Berlin	2,600	0,000	1,521	4,121	1,0
BB	Brandenburg	0,000	0,000	0,000	0,000	0,0
НВ	Bremen	0,000	0,000	3,276	3,276	0,8
HH	Hamburg	0,057	0,000	0,000	0,057	0,0
HE	Hessen	0,000	18,654	38,223	56,877	14,4
MV	Mecklenburg-Vorpommern	0,000	0,000	0,000	0,000	0,0
NI	Niedersachsen	0,000	0,000	0,294	0,294	0,1
NW	Nordrhein-Westfalen	5,974	2,580	11,565	20,119	5,1
RP	Rheinland-Pfalz	0,000	4,200	3,688	7,888	2,0
SL	Saarland	0,000	0,000	0,000	0,000	0,0
SN	Sachsen	0,000	2,472	16,058	18,530	4,7
ST	Sachsen-Anhalt	0,000	0,000	0,414	0,414	0,1
SH	Schleswig Holstein	0,000	0,000	13,953	13,953	3,5
TH	Thüringen	0,000	6,641	1,485	8,126	2,1
	Alle Bundesländer All Federal States	38,173	196,327	159,667	394,167	100,0

Tunnelbauvorhaben – geplante Vorhaben

Quelle: STUVA

(Tunnelbau in Deutschland: Statistik 2008/2009 – Analyse und Ausblick: Prof. A. Haack)

- U-, Stadtbahn- und S-Bahn-Tunnel
 - Stadt München (ca. 21 km)
 - Stuttgart, Karlsruhe, Nürnberg, Duisburg und Berlin (je ca. 3 km)
- Fernbahnen
 - Stuttgart-Augsburg (ca. 70 km, ABS und NBS)
 - Stuttgart 21 (57 km)
 - Nürnberg-Erfurt (17 km, ABS und NBS)
- Straßentunnel
 - Ca. 2/3 des Volumens betreffen die alten Bundesländer
 - Ca. 160 km geplant (+80 km zusätzlich geplanter Straßentunnel, deren Realisierung zeitlich und finanziell noch nicht endgültig gesichert ist)
- Details zu den Einzelprojekten und zur Statistik (STUVA)
 - http://www.stuva.de/tunnelbau-bautechnik/tunnelstatistik.html
 - http://www.tunnel-online.info/download/160438/Tunnelbau-in-Deutschland.pdf


Technischer Hintergrund

- Anforderungsprofile
 - Passive Verteilsysteme
 - Aktive Verteilsysteme
- Arten von TMO-Repeater-Systemen
 - Bandselektive Repeatersysteme
 - Kanalselektive Repeatersysteme
 - Optische Repeatersysteme
 - Multibandsysteme
- Zusammenfassung

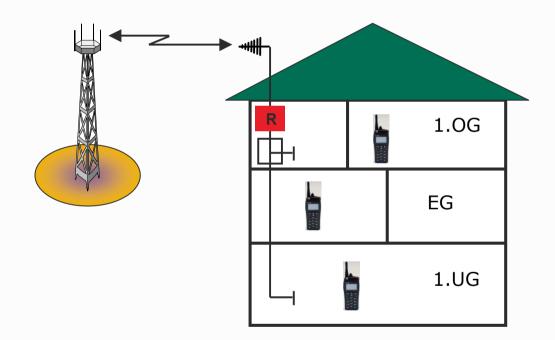
Anforderungsprofile

- Inhouse-Versorgung notwendig für
 - Feuerwehr,
 - Werksschutz
 - Polizei.
- Versorgungspegel in Gebäuden oftmals zu gering.
- Lösungsansätze
 - Passive Verteilsysteme
 - Aktive Verteilsysteme (Repeatertechniken)

Lösungsansatz

Passive Verteilsysteme

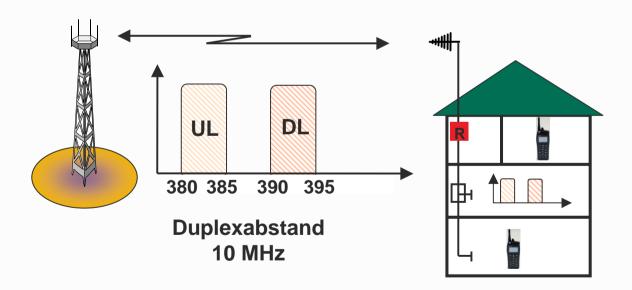
- Gebäude mit Basisstation
 - Passive Versorgung mittels Antennen, Strahlkabel, etc...
 - Versorgung von Etagen, Tiefgarage, Kellergeschosse
- Anspruchsvolle Planung unter Beachtung
 - typischen Parameter von passiven Koppelnetzwerken
 - Koaxial- oder Schlitzkabel
 - Realisierbarkeit RX-Pfad
 - (Breitbandige Einspeisung)



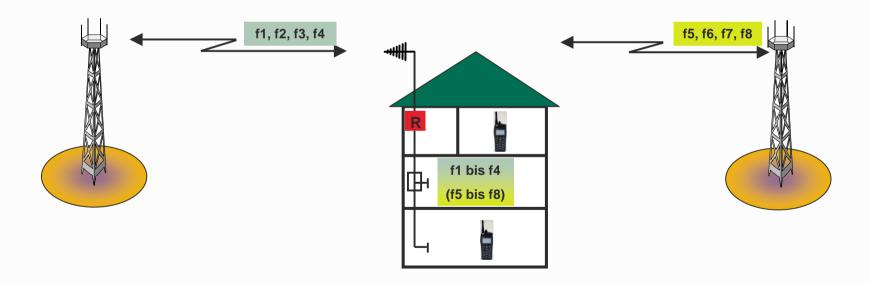
Outdoor-

Lösungsansatz

Aktive Verteilsysteme - Repeatertechnik

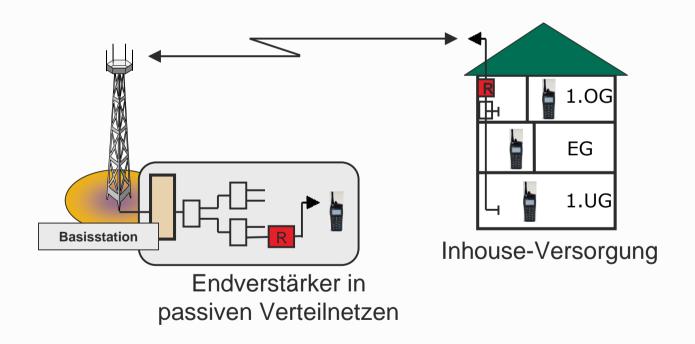

- Prinzip TMO Repeater
 - Funk- oder Leitungsanbindung
 - Signalverstärkung
 - HF-Verteilung/ Empfang
- Arten von TMO Repeatern
 - Bandselektive Repeater
 - Kanalselektive Repeater
 - Optische, bandselektive Repeatersysteme

Bandselektive Repeater - 1


- Es werden alle Träger innerhalb der Bandbreite verstärkt.
- Die Ausgangsleistung sinkt mit Erhöhung der Anzahl der HF-Träger.
- Meist Leitungsanbindung auch Funkanbindung möglich.

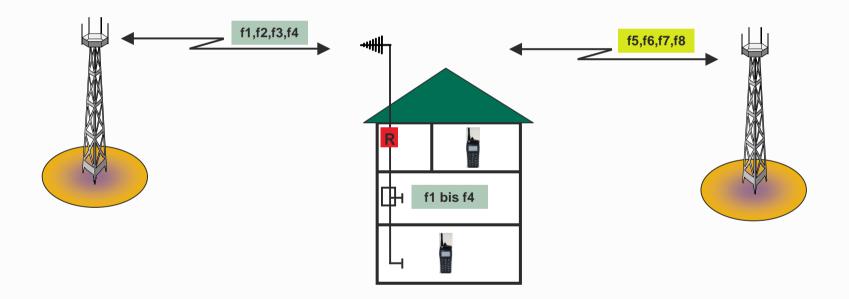
Bandselektive Repeater – 2

- Bei Funkanbindung Ausrichtung der Antenne in Richtung BS.
 - geringer Öffnungswinkel,
 - Hoher Gewinn mit gutem Front-to-Back Verhältnis

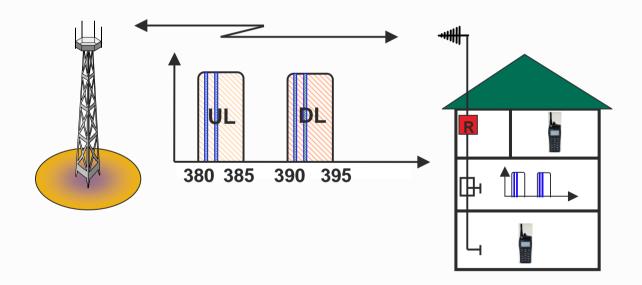


Anwendungen von TMO Repeatern

Bandselektive Repeater - 3

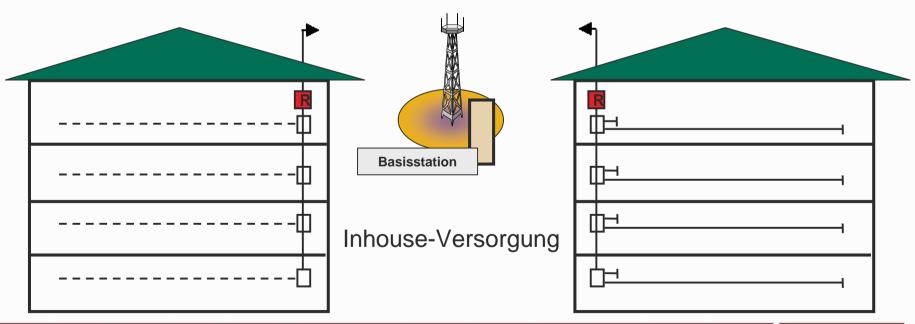

- Kleinere Versorgungsbereiche wie Polizeistation, kleines Bürogebäude, Parkhaus, usw...
- Endverstärker in passiven Verteilnetzen

Kanalselektive Repeater - 1


- Nur die eingestellten Kanäle werden verstärkt.
- Meist Funkanbindung auch Leitungsanbindung möglich.

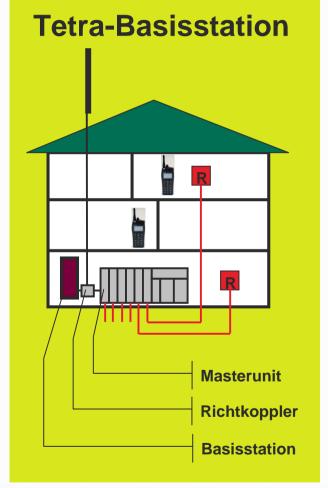
Kanalselektive Repeater – 2

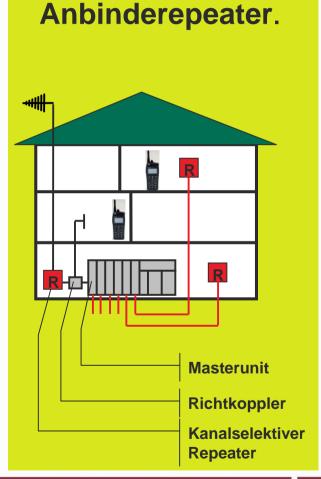
- Bei Funkanbindung Ausrichtung der Antenne in Richtung BS.
 - geringer Öffnungswinkel,
 - Hoher Gewinn mit gutem Front-to-Back Verhältnis



Anwendungen von TMO Repeatern

Kanalselektive Repeater - 3

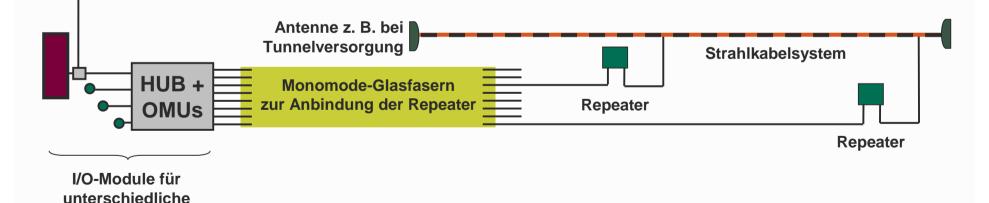

- Mittelgroße Inhouse-Versorgungen (Tiefgaragen, öffentl. Gebäude, Schulen, Verwaltungen etc.)
- Kleine bis mittlere Tunnelversorgungssysteme
- Versorgungslücken im Außenbereich (Funkschatten)
- Anbinderepeater für optische Repeaterverteilsysteme



Optische Repeatersysteme

Anbindung über eine optische Master Unit (OMU) an eine

oder über



Anwendung von optischen Systemen

z. B. Multibandsysteme

- Multibandsysteme für ein breites Anwendungsspektrum über z. B. ein einziges Strahlkabelsystem
- Unterschiedliches Anforderungsprofil je nach Gebäudeart, z. B.
 - Tiefgarage
 z. B. AM-/FM-Radio, BOS-Funk (2 m, 4 m, 70 cm), GSM, UMTS
 - Tunnel
 z. B. AM-/FM-Radio, BOS-Funk (2 m, 4 m, 70 cm), GSM, GSM-R, UMTS
 - Hotelanlage
 z. B. AM-/FM-Radio, BOS-Funk (2 m, 4 m, 70 cm), GSM, UMTS, WLAN

Anforderungen

Zusammenfassung

Leitungsanbindung von Repeatern

- LWL angebundener Repeater
- Vorteile
 - Einsatz bei nutzbarer LWL Infrastruktur.
 - In Verbindung mit Optischer Unit bis zu 24 Repeater anbindbar.
 - Redundante Wegeführung möglich.
 - Hohe Ausgangsleistung nach Verstärkung.
 - Überwachung und Fernsteuerung über die optischen Fasern.
- Voraussetzung
 - Single-Mode-Faser E9/125
 - In Campusbereiche teilweise auch Multimode-Faser möglich

Zusammenfassung

Funkanbindung von Repeatern

■ Vorteile

- Einsatz bei fehlender oder technisch nicht nutzbarer LWL Infrastruktur.
- Anbindung über die Luftschnittstelle.
- Hohe Ausgangsleistung nach Verstärkung.
- Ausgerüstet mit Modem zur Fernsteuerung und -überwachung.

Voraussetzung

- Ausreichender Pegel an der Empfangsantenne (Abstand zur Basisstation ca. 2 km)
- Antennenisolation muss 10 -15 mal größer sein als eingestellte Verstärkung, vorteilhaft:
 - Nutzung von Gebäuden
 - Vertikale Seperation (geringen Öffnungswinkel)
 - Hohe Gewinn Antennen mit gutem Front-to-Back-Verhältnis

